Аналогия: различия между версиями

Материал из Свободное время
Перейти к навигации Перейти к поиску
(Новая страница: «Аналогией мы называем умозаключение, в котором от сходства двух вещей в известном числе свойств мы заключаем к сходству в других свойствах. Из сходства в одной части признаков мы умозаключаем к существованию сходства в другой части признаков. Учебни...»)
 
Строка 1: Строка 1:
Аналогией мы называем умозаключение, в котором от сходства двух вещей в известном числе свойств мы заключаем к сходству в других свойствах. Из сходства в одной части признаков мы умозаключаем к существованию сходства в другой части признаков.
Аналогией мы называем умозаключение, в котором от сходства двух вещей в известном числе свойств мы заключаем к сходству в других свойствах. Из сходства в одной части признаков мы умозаключаем к существованию сходства в другой части признаков.
И в индукции и в аналогии мы умозаключаем от частностей, но разница между ними та, что индукция приходит к общему, а умозаключение по аналогии приходит опять к частностям. Умозаключение по аналогии не обращается к какому-нибудь определённому общему закону. В умозаключении по аналогии мы умозаключаем не от случаев, а от известного числа пунктов сходства.


[[Учебник_логики_Г._Челпанова,_книга|Г. Челпанов, Учебник логики]]
[[Учебник_логики_Г._Челпанова,_книга|Г. Челпанов, Учебник логики]]

Версия 18:34, 16 ноября 2023

Аналогией мы называем умозаключение, в котором от сходства двух вещей в известном числе свойств мы заключаем к сходству в других свойствах. Из сходства в одной части признаков мы умозаключаем к существованию сходства в другой части признаков.

И в индукции и в аналогии мы умозаключаем от частностей, но разница между ними та, что индукция приходит к общему, а умозаключение по аналогии приходит опять к частностям. Умозаключение по аналогии не обращается к какому-нибудь определённому общему закону. В умозаключении по аналогии мы умозаключаем не от случаев, а от известного числа пунктов сходства.

Г. Челпанов, Учебник логики